Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 51
1.
Radiat Res ; 201(5): 504-513, 2024 May 01.
Article En | MEDLINE | ID: mdl-38471521

Increased radiological and nuclear threats require preparedness. Our earlier work identified a set of four genes (DDB2, FDXR, POU2AF1 and WNT3), which predicts severity of the hematological acute radiation syndrome (H-ARS) within the first three days postirradiation In this study of 41 Rhesus macaques (Macaca mulatta, 27 males, 14 females) irradiated with 5.8-7.2 Gy (LD29-50/60), including some treated with gamma-tocotrienol (GT3, a radiation countermeasure) we independently validated these genes as predictors in both sexes and examined them after three days. At the Armed Forces Radiobiology Research Institute/Uniformed Services University of the Health Sciences, peripheral whole blood (1 ml) of Rhesus macaques was collected into PAXgene® Blood RNA tubes pre-irradiation after 1, 2, 3, 35 and 60 days postirradiation, stored at -80°C for internal experimental analyses. Leftover tubes from these already ongoing studies were kindly provided to Bundeswehr Institute of Radiobiology. RNA was isolated (QIAsymphony), converted into cDNA, and for further gene expression (GE) studies quantitative RT-PCR was performed. Differential gene expression (DGE) was measured relative to the pre-irradiation Rhesus macaques samples. Within the first three days postirradiation, we found similar results to human data: 1. FDXR and DDB2 were up-regulated, FDXR up to 3.5-fold, and DDB2 up to 13.5-fold in the median; 2. POU2AF1 appeared down regulated around tenfold in nearly all Rhesus macaques; 3. Contrary to human data, DDB2 was more up-regulated than FDXR, and the difference of the fold change (FC) ranged between 2.4 and 10, while the median fold changes of WNT3, except days 1 and 35, were close to 1. Nevertheless, 46% of the Rhesus macaques showed down-regulated WNT3 on day one postirradiation, which decreased to 12.2% on day 3 postirradiation. Considering the extended phase, there was a trend towards decreased fold changes at day 35, with median-fold changes ranging from 0.7 for DDB2 to 0.1 for POU2AF1, and on day 60 postirradiation, DGE in surviving animals was close to pre-exposure values for all four genes. In conclusion, the diagnostic significance for radiation-induced H-ARS severity prediction of FDXR, DDB2, and POU2AF1 was confirmed in this Rhesus macaques model. However, DDB2 showed higher GE values than FDXR. As shown in previous studies, the diagnostic significance of WNT3 could not be reproduced in Rhesus macaques; this could be due to the choice of animal model and methodological challenges.


Acute Radiation Syndrome , Macaca mulatta , Animals , Male , Female , Acute Radiation Syndrome/blood , Acute Radiation Syndrome/genetics
2.
Radiat Res ; 201(5): 514-522, 2024 May 01.
Article En | MEDLINE | ID: mdl-38514385

In times of war, radiological/nuclear emergency scenarios have become a reemphasized threat. However, there are challenges in transferring whole-blood samples to laboratories for specialized diagnostics using RNA. This project aims to miniaturize the process of unwieldy conventional RNA extraction with its stationed technical equipment using a microfluidic-based slide (MBS) for point-of-care diagnostics. The MBS is thought to be a preliminary step toward the development of a so-called lab-on-a-chip microfluidic device. A MBS would enable early and fast field care combined with gene expression (GE) analysis for the prediction of hematologic acute radiation syndrome (HARS) severity or identification of RNA microbes. Whole blood samples from ten healthy donors were irradiated with 0, 0.5 and 4 Gy, simulating different ARS severity degrees. RNA quality and quantity of a preliminary MBS was compared with a conventional column-based (CB) RNA extraction method. GE of four HARS severity-predicting radiation-induced genes (FDXR, DDB2, POU2AF1 and WNT3) was examined employing qRT-PCR. Compared to the CB method, twice as much total RNA from whole blood could be extracted using the MBS (6.6 ± 3.2 µg vs. 12.0 ± 5.8 µg) in half of the extraction time, and all MBS RNA extracts appeared DNA-free in contrast to the CB method (30% were contaminated with DNA). Using MBS, RNA quality [RNA integrity number equivalent (RINe)] values decreased about threefold (3.3 ± 0.8 vs. 9.0 ± 0.4), indicating severe RNA degradation, while expected high-quality RINe ≥ 8 were found using column-based method. However, normalized cycle threshold (Ct) values, as well as radiation-induced GE fold-changes appeared comparable for all genes utilizing both methods, indicating that no RNA degradation took place. In summary, the preliminary MBS showed promising features such as: 1. halving the RNA extraction time without the burden of heavy technical equipment (e.g., a centrifuge); 2. absence of DNA contamination in contrast to CB RNA extraction; 3. reduction in blood required, because of twice the biological output of RNA; and 4. equal GE performance compared to CB, thus, increasing its appeal for later semi-automatic parallel field applications.


Point-of-Care Systems , RNA , Humans , RNA/isolation & purification , RNA/blood , RNA/genetics , Lab-On-A-Chip Devices , Acute Radiation Syndrome/blood , Acute Radiation Syndrome/etiology , Acute Radiation Syndrome/diagnosis , Acute Radiation Syndrome/genetics
3.
Radiat Res ; 196(2): 156-174, 2021 08 01.
Article En | MEDLINE | ID: mdl-34019667

Coagulopathies are well documented after acute radiation exposure at hematopoietic doses, and radiation-induced bleeding is notably one of the two main causes of mortality in the hematopoietic acute radiation syndrome. Despite this, understanding of the mechanisms by which radiation alters hemostasis and induces bleeding is still lacking. Here, male Göttingen minipigs received hematopoietic doses of 60Co gamma irradiation (total body) and coagulopathies were characterized by assessing bleeding, blood cytopenia, fibrin deposition, changes in hemostatic properties, coagulant/anticoagulant enzyme levels, and markers of inflammation, endothelial dysfunction, and barrier integrity to understand if a relationship exists between bleeding, hemostatic defects, bone marrow aplasia, inflammation, endothelial dysfunction and loss of barrier integrity. Acute radiation exposure induced coagulopathies in the Göttingen minipig model of hematopoietic acute radiation syndrome; instances of bleeding were not dependent upon thrombocytopenia. Neutropenia, alterations in hemostatic parameters and damage to the glycocalyx occurred in all animals irrespective of occurrence of bleeding. Radiation-induced bleeding was concurrent with simultaneous thrombocytopenia, anemia, neutropenia, inflammation, increased heart rate, decreased nitric oxide bioavailability and endothelial dysfunction; bleeding was not observed with the sole occurrence of a single aforementioned parameter in the absence of the others. Alteration of barrier function or clotting proteins was not observed in all cases of bleeding. Additionally, fibrin deposition was observed in the heart and lungs of decedent animals but no evidence of DIC was noted, suggesting a unique pathophysiology of radiation-induced coagulopathies. These findings suggest radiation-induced coagulopathies are the result of simultaneous damage to several key organs and biological functions, including the immune system, the inflammatory response, the bone marrow and the cardiovasculature.


Acute Radiation Syndrome/pathology , Hematopoiesis/genetics , Hemorrhage/pathology , Inflammation/pathology , Abnormalities, Radiation-Induced , Acute Radiation Syndrome/blood , Acute Radiation Syndrome/etiology , Animals , Coagulation Protein Disorders/blood , Coagulation Protein Disorders/etiology , Coagulation Protein Disorders/pathology , Disease Models, Animal , Hematopoiesis/radiation effects , Hemorrhage/blood , Hemorrhage/etiology , Humans , Inflammation/blood , Inflammation/etiology , Swine , Swine, Miniature
4.
Health Phys ; 119(5): 594-603, 2020 11.
Article En | MEDLINE | ID: mdl-32947487

Exposure to total- and partial-body irradiation following a nuclear or radiological incident result in the potentially lethal acute radiation syndromes of the gastrointestinal and hematopoietic systems in a dose- and time-dependent manner. Radiation-induced damage to the gastrointestinal tract is observed within days to weeks post-irradiation. Our objective in this study was to evaluate plasma biomarker utility for the gastrointestinal acute radiation syndrome in non-human primates after partial body irradiation with minimal bone marrow sparing through correlation with tissue and histological analyses. Plasma and jejunum samples from non-human primates exposed to partial body irradiation of 12 Gy with bone marrow sparing of 2.5% were evaluated at various time points from day 0 to day 21 as part of a natural history study. Additionally, longitudinal plasma samples from non-human primates exposed to 10 Gy partial body irradiation with 2.5% bone marrow sparing were evaluated at timepoints out to 180 d post-irradiation. Plasma and jejunum metabolites were quantified via liquid chromatography-tandem mass spectrometry and histological analysis consisted of corrected crypt number, an established metric to assess radiation-induced gastrointestinal damage. A positive correlation of metabolite levels in jejunum and plasma was observed for citrulline, serotonin, acylcarnitine, and multiple species of phosphatidylcholines. Citrulline levels also correlated with injury and regeneration of crypts in the small intestine. These results expand the characterization of the natural history of gastrointestinal acute radiation syndrome in non-human primates exposed to partial body irradiation with minimal bone marrow sparing and also provide additional data toward the correlation of citrulline with histological endpoints.


Acute Radiation Syndrome/diagnosis , Biomarkers/blood , Bone Marrow/radiation effects , Gastrointestinal Tract/metabolism , Organ Sparing Treatments/methods , Radiation Exposure/adverse effects , Radiation Injuries, Experimental/diagnosis , Acute Radiation Syndrome/blood , Acute Radiation Syndrome/etiology , Animals , Citrulline/blood , Gastrointestinal Tract/radiation effects , Macaca mulatta , Male , Radiation Dosage , Radiation Injuries, Experimental/blood , Radiation Injuries, Experimental/etiology
5.
Health Phys ; 119(5): 621-632, 2020 11.
Article En | MEDLINE | ID: mdl-32947488

High-dose radiation exposure results in organ-specific sequelae that occurs in a time- and dose-dependent manner. The partial body irradiation with minimal bone marrow sparing model was developed to mimic intentional or accidental radiation exposures in humans where bone marrow sparing is likely and permits the concurrent analysis of coincident short- and long-term damage to organ systems. To help inform on the natural history of the radiation-induced injury of the partial body irradiation model, we quantitatively profiled the plasma proteome of non-human primates following 12 Gy partial body irradiation with 2.5% bone marrow sparing with 6 MV LINAC-derived photons at 0.80 Gy min over a time period of 3 wk. The plasma proteome was analyzed by liquid chromatography-tandem mass spectrometry. A number of trends were identified in the proteomic data including pronounced protein changes as well as protein changes that were consistently upregulated or downregulated at all time points and dose levels interrogated. Pathway and gene ontology analysis were performed; bioinformatic analysis revealed significant pathway and biological process perturbations post high-dose irradiation and shed light on underlying mechanisms of radiation damage. Additionally, proteins were identified that had the greatest potential to serve as biomarkers for radiation exposure.


Acute Radiation Syndrome/diagnosis , Biomarkers/blood , Bone Marrow/radiation effects , Organ Sparing Treatments/methods , Proteome/analysis , Radiation Exposure/adverse effects , Radiation Injuries, Experimental/diagnosis , Acute Radiation Syndrome/blood , Acute Radiation Syndrome/etiology , Animals , Macaca mulatta , Male , Radiation Dosage , Radiation Injuries, Experimental/blood , Radiation Injuries, Experimental/etiology
6.
Int J Radiat Biol ; 96(1): 112-128, 2020 01.
Article En | MEDLINE | ID: mdl-30475652

Purpose: Göttingen minipig (G-MP) displays classic gastrointestinal acute radiation syndrome (GI-ARS) following total body irradiation (TBI) at GI doses which are lethal by 10-14 days. In collaboration with BARDA, we are developing a hemi-body/partial body irradiation (PBI) model by exposing only the abdomen and lower extremities to study GI structure/function impairment, natural history of injury and recovery, as well as correlative biomarkers out to 30 days.Materials and methods: Twenty-four G-MP were exposed to either 12 or 16 Gy (LINAC Elekta); head, forelimbs, and thorax were outside the irradiation field, sparing ∼50% of the bone marrow. Animals were followed for 30 days with euthanasia scheduled at pre-set intervals to study the time course of GI injury and recovery. Hematological profiles, clinical symptoms, gross- and histo-pathology including markers of proliferation and apoptosis in the small intestines, gut function parameters (food tolerance, digestion, absorption, citrulline production), and levels of two biomarkers, CRP and IGF-1, were evaluated.Results: PBI at 16 Gy yielded higher lethality than 12 Gy. Unlike TBI, PBI did not cause severe pancytopenia or external hemorrhage, as expected, and allowed to focus the injury on GI organs while sparing the radiation sensitive heart and lung. Compromised animals showed inactivity, anorexia, vomiting, diarrhea, and weight loss. Histology revealed that in 12 Gy irradiated animals, lesions recovered overtime. In 16 Gy irradiated animals, lesions were more pronounced and persistent. BrdU and Ki67 labelling demonstrated dose-dependent loss of crypts and subsequent mucosal ulceration which recovered over time. Minimal apoptosis was observed at both doses. Reductions in food tolerance, digestion, absorption, and citrulline production were time and dose-dependent. Loss of citrulline reached a nadir between 6-12 days and then recovered partially. CRP and IGF-1 were upregulated following PBI at GI doses.Conclusions: This lower hemi-body irradiation model allowed for extended survival at GI-specific ARS doses and development of a well-controlled GI syndrome with minimal hematopoietic injury or confounding mortality from cardiopulmonary damage. A dose-dependent impairment in the intestinal structure resulted in overall decreased gut functionality followed by a partial recovery. However, while the structure appeared to be recovered, not all functionality was attained. PBI induced systemic inflammation and altered the IGF-1 hormone indicating that these can be used as biomarkers in the minipig even under partial body conditions. This PBI model aligns with other minipig models under BARDA's large animal consortium to test medical countermeasure efficacy against a less complex GI-specific ARS injury.


Acute Radiation Syndrome/pathology , Acute Radiation Syndrome/physiopathology , Gastrointestinal Tract/physiopathology , Gastrointestinal Tract/radiation effects , Acute Radiation Syndrome/blood , Animals , Blood Cell Count , C-Reactive Protein/metabolism , Citrulline/blood , Digestion/radiation effects , Disease Models, Animal , Dose-Response Relationship, Radiation , Gastrointestinal Tract/pathology , Insulin-Like Growth Factor I/metabolism , Male , Swine , Swine, Miniature , Time Factors
7.
Int J Radiat Biol ; 96(1): 100-111, 2020 01.
Article En | MEDLINE | ID: mdl-29447591

Purpose: Characterization of a novel partial-body irradiation (PBI) shielding strategy in nonhuman primates (NHP; rhesus macaques), aimed at protecting the oral cavity, with respect to various gastrointestinal acute radiation syndrome (GI-ARS) syndrome parameters as well as buccal ulceration development.Materials and methods: NHPs were irradiated using a Cobalt-60 gamma source, in a single uniform dose, ranging from 9-13 Gy and delivered at 0.60-0.80 Gy min-1. Animals were either partially shielded via oral cavity shielding (PBIOS) or underwent total-body irradiation (TBI).Results: Clinical manifestations of GI-ARS, and also radiation-induced hematology and clinical chemistry changes, following PBIOS were comparable to the PBI NHP GI-ARS model utilizing shielding of the distal pelvic limbs and were significantly milder than TBI at similar radiation doses. Nadir citrulline levels were comparable between PBIOS and TBI but signs of recovery appeared earlier in PBIOS-treated animals. The PBIOS model prevented oral mucositis, whereas the TBI model presented buccal ulcerations at all tested radiation dose levels.Conclusions: Taken together, these results suggest that the PBIOS model is a suitable alternative to traditional PBI. For GI-ARS investigations requiring orally administered medical countermeasures, PBIOS confers added value due to the prevention of oral mucositis over traditional PBI.


Mouth/radiation effects , Radiation Protection/methods , Acute Radiation Syndrome/blood , Acute Radiation Syndrome/etiology , Acute Radiation Syndrome/pathology , Animals , Citrulline/blood , Cobalt Radioisotopes/adverse effects , Gamma Rays/adverse effects , Macaca mulatta , Male , Survival Analysis , Ulcer/blood , Ulcer/etiology , Ulcer/pathology
8.
Molecules ; 24(22)2019 Nov 06.
Article En | MEDLINE | ID: mdl-31698831

Prostaglandins and inhibitors of their synthesis (cyclooxygenase (COX) inhibitors, non-steroidal anti-inflammatory drugs) were shown to play a significant role in the regulation of hematopoiesis. Partly due to their hematopoiesis-modulating effects, both prostaglandins and COX inhibitors were reported to act positively in radiation-exposed mammalian organisms at various pre- and post-irradiation therapeutical settings. Experimental efforts were targeted at finding pharmacological procedures leading to optimization of therapeutical outcomes by minimizing undesirable side effects of the treatments. Progress in these efforts was obtained after discovery of selective inhibitors of inducible selective cyclooxygenase-2 (COX-2) inhibitors. Recent studies have been able to suggest the possibility to find combined therapeutical approaches utilizing joint administration of prostaglandins and inhibitors of their synthesis at optimized timing and dosing of the drugs which could be incorporated into the therapy of patients with acute radiation syndrome.


Acute Radiation Syndrome/metabolism , Hematopoiesis/drug effects , Prostaglandins/biosynthesis , Prostaglandins/pharmacology , Radiation-Protective Agents/pharmacology , Acute Radiation Syndrome/blood , Acute Radiation Syndrome/drug therapy , Acute Radiation Syndrome/etiology , Animals , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/therapeutic use , Disease Models, Animal , Humans , Metabolic Networks and Pathways/drug effects , Radiation-Protective Agents/therapeutic use
9.
Radiat Res ; 192(6): 602-611, 2019 12.
Article En | MEDLINE | ID: mdl-31556847

Acute radiation syndrome (ARS) occurs as a result of partial- or whole-body, high-dose exposure to radiation in a very short period of time. Survival is dependent on the severity of the hematopoietic sub-syndrome of ARS. In this study, we investigated the mitigating effects of a lipid molecule, 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG), on the kinetics of hematopoietic cells, including absolute neutrophil count (ANC), red blood cells (RBCs) and platelet counts, in mice after gamma-ray total-body irradiation (TBI). Male and female BALB/c mice (11 weeks old) received a LD70/30 dose of TBI. PLAG significantly and dose-dependently attenuated radiation-induced mortality (P = 0.0041 for PLAG 50 mg/kg; P < 0.0001 for PLAG 250 mg/kg) and body weight loss (P < 0.0001 for PLAG 50 and 250 mg/kg) in mice. Single-fraction TBI sharply reduced ANC within 3 days postirradiation and maintained the neutropenic state (ANC < 500 cells/µl) by approximately 26.8 ± 0.8 days. However, administration of PLAG attenuated radiation-induced severe neutropenia (ANC < 100 cells/µl) by effectively delaying the mean day of its onset and decreasing its duration. PLAG also significantly mitigated radiation-induced thrombocytopenia (P < 0.0001 for PLAG 250 mg/kg) and anemia (P = 0.0023 for PLAG 250 mg/kg) by increasing mean platelet and RBC counts, as well as hemoglobin levels, in peripheral blood. Moreover, delayed administration of PLAG, even at 48 and 72 h after gamma-ray irradiation, significantly attenuated radiation-induced mortality in a time-dependent manner. When compared to olive oil and palmitic linoleic hydroxyl (PLH), only PLAG effectively attenuated radiation-induced mortality, indicating that it has a distinctive mechanism of action. Based on these preclinical observations, we concluded that PLAG has high potential as a radiation countermeasure for the improvement of survivability and the treatment of hematopoietic injury in gamma-ray-induced ARS.


Acute Radiation Syndrome/blood , Acute Radiation Syndrome/drug therapy , Diglycerides/therapeutic use , Radiation, Ionizing , Whole-Body Irradiation/adverse effects , Animals , Blood Platelets/radiation effects , Body Weight , Erythrocytes/radiation effects , Female , Gamma Rays , Kinetics , Male , Mice , Mice, Inbred BALB C , Neutrophils/radiation effects , Platelet Count , Thrombocytopenia/etiology
10.
Radiat Prot Dosimetry ; 186(1): 31-36, 2019 Dec 31.
Article En | MEDLINE | ID: mdl-31321440

The group of radiation victims who had received radiation injures similar to those of Chernobyl accident victims was evaluated in terms of retrospective cytogenetic biodosimetry in the long term period of from 17 y up to 50 y after irradiation. Based on the existing results of the long-term cytogenetic examination of the victims injured after the Chernobyl accident, an original method was developed. This method of retrospective dose recovery was based on the use of a special computer program, the time elapsed after irradiation and the frequency of atypical chromosomes. Both patient groups were examined using conventional cytogenetic analysis. The new method of a retrospective biodosimetry was tested on the non-Chernobyl group. As a result the multiple regression equations which included frequency atypical chromosomes produced better results because the majority of the estimates of the retrospective doses fell into the 95%-prediction intervals for the reference group of the Chernobyl victims.


Acute Radiation Syndrome/diagnosis , Biomarkers/analysis , Chromosome Aberrations , Cytogenetic Analysis/methods , Gamma Rays/adverse effects , Radiometry/methods , Acute Radiation Syndrome/blood , Acute Radiation Syndrome/etiology , Chernobyl Nuclear Accident , Humans , Occupational Exposure/adverse effects , Radiation Dosage , Radioactive Hazard Release , Retrospective Studies , Time Factors
11.
Radiat Prot Dosimetry ; 186(1): 15-23, 2019 Dec 31.
Article En | MEDLINE | ID: mdl-31330012

Results from archived (1986 and 1996) experiments were used to establish a baboon radiation-quality dose-response database with haematology biomarker time-course data following exposure to mixed-fields (i.e. neutron to gamma ratio: 5.5; dose: 0-8 Gy) and 60Co gamma-ray exposures (0-15 Gy). Time-course (i.e. 0-40 d) haematology changes for relevant blood-cell types for both mixed-field (neutron to gamma ratio = 5.5) and gamma ray alone were compared and models developed that showed significant differences using the maximum likehood ratio test. A consensus METREPOL-like haematology ARS (H-ARS) severity scoring system for baboons was established using these results. The data for mixed-field and the gamma only cohorts appeared similar, and so the cohorts were pooled into a single consensus H-ARS severity scoring system. These findings provide proof-of-concept for the use of a METREPOL H-ARS severity scoring system following mixed-field and gamma exposures.


Acute Radiation Syndrome/diagnosis , Biomarkers/analysis , Gamma Rays/adverse effects , Hematology/methods , Models, Biological , Neutrons/adverse effects , Acute Radiation Syndrome/blood , Acute Radiation Syndrome/etiology , Animals , Male , Papio , Radiation Dosage
12.
Radiat Res ; 192(2): 208-218, 2019 08.
Article En | MEDLINE | ID: mdl-31211643

Radiological exposure scenarios involving large numbers of people require a rapid and high-throughput method to identify the unexposed, and those exposed to low- and high-dose radiation. Those with high-dose exposure, e.g., >2 Gy and depending on host characteristics, may develop severe hematological acute radiation syndrome (HARS), requiring hospitalization and treatment. Previously, we identified a set of genes that discriminated these clinically relevant groups. In the current work, we examined the utility of gene expression changes to classify 1,000 split blood samples into HARS severity scores of H0, H1 and H2-4, with the latter indicating likely hospitalization. In several previous radiation dose experiments, we determined that these HARS categories corresponded, respectively, to doses of 0 Gy (unexposed), 0.5 Gy and 5 Gy. The main purpose of this work was to assess the rapidity of blood sample processing using targeted next-generation sequencing (NGS). Peripheral blood samples from two healthy donors were X-ray irradiated in vitro and incubated at 37°C for 24 h. A total of 1,000 samples were evaluated by laboratory personnel blinded to the radiation dose. Changes in gene expression of FDXR, DDB2, POU2AF1 and WNT3 were examined with qRT-PCR as positive controls. Targeted NGS (TREX) was used on all samples for the same four genes. Agreement using both methods was almost 78%. Using NGS, all 1,000 samples were processed within 30 h. Classification of the HARS severity categories corresponding to radiation dose had an overall agreement ranging between 90-97%. Depending on the end point, either a combination of all genes or FDXR alone (H0 HARS or unexposed) provided the best classification. Using this optimized automated methodology, we assessed 100× more samples approximately three times faster compared to standard cytogenetic studies. We showed that a small set of genes, rather than a complex constellation of genes, provided robust positive (97%) and negative (97%) predictive values for HARS categories and radiation doses of 0, 0.5 and 5 Gy. The findings of this study support the potential utility of early radiation-induced gene expression changes for high-throughput biodosimetry and rapid identification of irradiated persons in need of hospitalization.


Acute Radiation Syndrome/diagnosis , Acute Radiation Syndrome/genetics , Gene Expression Profiling , Radiation Exposure/adverse effects , Triage/methods , Acute Radiation Syndrome/blood , Acute Radiation Syndrome/etiology , Adult , False Positive Reactions , Female , Humans , Male , Time Factors , Young Adult
13.
Radiat Res ; 191(5): 428-438, 2019 05.
Article En | MEDLINE | ID: mdl-30870098

Detonation of a radiological or nuclear device in a major urban area will result in heterogenous radiation exposure, given to the significant shielding of the exposed population due to surrounding structures. Development of biodosimetry assays for triage and treatment requires knowledge of the radiation dose-volume effect for the bone marrow (BM). This proof-of-concept study was designed to quantify BM damage in the non-human primate (NHP) after exposure to one of four radiation patterns likely to occur in a radiological/nuclear attack with varying levels of BM sparing. Rhesus macaques (11 males, 12 females; 5.30-8.50 kg) were randomized by weight to one of four arms: 1. bilateral total-body irradiation (TBI); 2. unilateral TBI; 3. bilateral upper half-body irradiation (UHBI); and 4. bilateral lower half-body irradiation (LHBI). The match-point for UHBI vs. LHBI was set at 1 cm above the iliac crest. Animals were exposed to 4 Gy of 6 MV X rays. Peripheral blood samples were drawn 14 days preirradiation and at days 1, 3, 5, 7 and 14 postirradiation. Dosimetric measurements after irradiation indicated that dose to the mid-depth xiphoid was within 6% of the prescribed dose. No high-grade fever, weight loss >10%, dehydration or respiratory distress was observed. Animals in the bilateral- and unilateral TBI arms presented with hematologic changes [e.g., absolute neutrophil count (ANC) <500/ll; platelets <50,000/ll] and clinical signs/symptoms (e.g., petechiae, ecchymosis) characteristic of the acute radiation syndrome. Animals in the bilateral UHBI arm presented with myelosuppression; however, none of the animals developed severe neutropenia or thrombocytopenia (ANC remained >500/µl; platelets >50,000/µl during 14-day follow-up). In contrast, animals in the LHBI arm (1 cm above the ilieac crest to the toes) were protected against BM toxicity with no marked changes in hematological parameters and only minor gross pathology [petechiae (1/5), splenomegaly (1/5) and mild pulmonary hemorrhage (1/5)]. The model performed as expected with respect to the dose-volume effect of total versus partial-BM irradiation, e.g., increased shielding resulted in reduced BM toxicity. Shielding of the major blood-forming organs (e.g., skull, ribs, sternum, thoracic and lumbar spine) spared animals from bone marrow toxicity. These data suggest that the biological consequences of the absorbed dose are dependent on the total volume and pattern of radiation exposure.


Acute Radiation Syndrome/blood , Hematologic Tests , Acute Radiation Syndrome/pathology , Animals , Body Weight/radiation effects , Disease Models, Animal , Female , Macaca mulatta , Radiometry
14.
J Proteome Res ; 18(5): 2260-2269, 2019 05 03.
Article En | MEDLINE | ID: mdl-30843397

Rapid assessment of radiation signatures in noninvasive biofluids may aid in assigning proper medical treatments for acute radiation syndrome (ARS) and delegating limited resources after a nuclear disaster. Metabolomic platforms allow for rapid screening of biofluid signatures and show promise in differentiating radiation quality and time postexposure. Here, we use global metabolomics to differentiate temporal effects (1-60 d) found in nonhuman primate (NHP) urine and serum small molecule signatures after a 4 Gy total body irradiation. Random Forests analysis differentially classifies biofluid signatures according to days post 4 Gy exposure. Eight compounds involved in protein metabolism, fatty acid ß oxidation, DNA base deamination, and general energy metabolism were identified in each urine and serum sample and validated through tandem MS. The greatest perturbations were seen at 1 d in urine and 1-21 d in serum. Furthermore, we developed a targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) with multiple reaction monitoring (MRM) method to quantify a six compound panel (hypoxanthine, carnitine, acetylcarnitine, proline, taurine, and citrulline) identified in a previous training cohort at 7 d after a 4 Gy exposure. The highest sensitivity and specificity for classifying exposure at 7 d after a 4 Gy exposure included carnitine and acetylcarnitine in urine and taurine, carnitine, and hypoxanthine in serum. Receiver operator characteristic (ROC) curve analysis using combined compounds show excellent sensitivity and specificity in urine (area under the curve [AUC] = 0.99) and serum (AUC = 0.95). These results highlight the utility of MS platforms to differentiate time postexposure and acquire reliable quantitative biomarker panels for classifying exposed individuals.


Acetylcarnitine/urine , Acute Radiation Syndrome/diagnosis , Carnitine/urine , Hypoxanthine/blood , Metabolomics/methods , Taurine/blood , Whole-Body Irradiation/methods , Acetylcarnitine/blood , Acute Radiation Syndrome/blood , Acute Radiation Syndrome/pathology , Acute Radiation Syndrome/urine , Animals , Biomarkers/blood , Biomarkers/urine , Carnitine/blood , Chromatography, Liquid , Citrulline/blood , Citrulline/urine , Energy Metabolism/genetics , Energy Metabolism/radiation effects , Fatty Acids/blood , Fatty Acids/urine , Female , Hypoxanthine/urine , Macaca mulatta , Male , Mass Spectrometry , Metabolome/genetics , Metabolome/radiation effects , Proline/blood , Proline/urine , Protein Biosynthesis/radiation effects , ROC Curve , Taurine/urine
15.
Sci Rep ; 9(1): 2198, 2019 02 18.
Article En | MEDLINE | ID: mdl-30778109

The increasing potential for accidental radiation exposure from either nuclear accidents or terrorist activities has escalated the need for radiation countermeasure development. We previously showed that a 30-day course of high-dose captopril, an ACE inhibitor, initiated 1-4 h after total body irradiation (TBI), improved Hematopoietic Acute Radiation Syndrome (H-ARS) and increased survival in mice. However, because of the time likely required for the deployment of a stockpiled radiation countermeasure to a radiation mass casualty site, there is a need for therapies that can be administered 24-48 hours after initial exposure. Using C57BL/6 mice exposed to an LD50-80/30 of 60Co TBI (7.75-7.9 Gy, 0.615 Gy/min), we show that low-dose captopril administration, initiated as late as 48 h post-TBI and continued for 14 days, significantly enhanced overall survival similarly to high-dose, rapid administration. Captopril treatment did not affect radiation-induced cell cycle arrest genes or the immediate loss of hematopoietic precursors. Reduced mortality was associated with the recovery of bone marrow cellularity and mature blood cell recovery at 21-30 days post-irradiation. Captopril reduced radiation-induced cytokines EPO, G-CSF, and SAA in the plasma. Finally, delayed captopril administration mitigated brain micro-hemorrhage at 21 days post-irradiation. These data indicate that low dose captopril administered as late as 48 h post-TBI for only two weeks improves survival that is associated with hematopoietic recovery and reduced inflammatory response. These data suggest that captopril may be an ideal countermeasure to mitigate H-ARS following accidental radiation exposure.


Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Captopril/administration & dosage , Hematopoiesis/drug effects , Hematopoiesis/radiation effects , Radiation-Protective Agents/administration & dosage , Whole-Body Irradiation , Acute Radiation Syndrome/blood , Acute Radiation Syndrome/etiology , Acute Radiation Syndrome/mortality , Acute Radiation Syndrome/prevention & control , Animals , Blood Cell Count , Cell Cycle/drug effects , Cell Cycle/radiation effects , Cytokines/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Gene Expression Regulation/drug effects , Gene Expression Regulation/radiation effects , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/radiation effects , Inflammation Mediators/metabolism , Mice , Radiation Dosage , Radiation Exposure , Time-to-Treatment , Whole-Body Irradiation/adverse effects
16.
Health Phys ; 116(4): 484-502, 2019 04.
Article En | MEDLINE | ID: mdl-30681425

Sex is an important confounding variable in biomarker development that must be incorporated into biomarker discovery and validation. Additionally, understanding of sex as a biological variable is essential for effective translation of biomarkers in animal models to human populations. Toward these ends, we conducted high-throughput targeted metabolomics using liquid chromatography tandem mass spectrometry and multiplexed immunoassay analyses using a Luminex-based system in both male and female mice in a model of total-body irradiation at a radiation dose consistent with the hematopoietic acute radiation syndrome. Metabolomic and immunoassay analyses identified metabolites and cytokines that were significantly different in plasma from naive and irradiated C57BL/6 mice consisting of equal numbers of female and male mice at 3 d after 8.0 or 8.72 Gy, an approximate LD60-70/30 dose of total-body irradiation. An additional number of metabolites and cytokines had sex-specific responses after radiation. Analyses of sham-irradiated mice illustrate the presence of stress-related changes in several cytokines due simply to undergoing the irradiation procedure, absent actual radiation exposure. Basal differences in metabolite levels between female and male were also identified as well as time-dependent changes in cytokines up to 9 d postexposure. These studies provide data toward defining the influence of sex on plasma-based biomarker candidates in a well-defined mouse model of acute radiation syndrome.


Acute Radiation Syndrome/metabolism , Hematopoiesis/radiation effects , Radiation Injuries, Experimental/metabolism , Acute Radiation Syndrome/blood , Acute Radiation Syndrome/etiology , Animals , Biomarkers/blood , Chromatography, Liquid , Cytokines/blood , Female , High-Throughput Screening Assays , Male , Mice , Mice, Inbred C57BL , Radiation Injuries, Experimental/blood , Radiation Injuries, Experimental/etiology , Sex Factors , Tandem Mass Spectrometry , Time Factors , Whole-Body Irradiation
17.
Radiat Res ; 190(6): 576-583, 2018 12.
Article En | MEDLINE | ID: mdl-30183511

Threats of nuclear terrorism coupled with potential unintentional ionizing radiation exposures have necessitated the need for large-scale response efforts of such events, including high-throughput biodosimetry for medical triage. Global metabolomics utilizing mass spectrometry (MS) platforms has proven an ideal tool for generating large compound databases with relative quantification and structural information in a short amount of time. Determining metabolite panels for biodosimetry requires experimentation to evaluate the many factors associated with compound concentrations in biofluids after radiation exposures, including temporal changes, pre-existing conditions, dietary intake, partial- vs. total-body irradiation (TBI), among others. Here, we utilize a nonhuman primate (NHP) model and identify metabolites perturbed in serum after 7.2 Gy TBI without supportive care [LD70/60, hematologic (hematopoietic) acute radiation syndrome (HARS) level H3] at 24, 36, 48 and 96 h compared to preirradiation samples with an ultra-performance liquid chromatography quadrupole time-of-flight (UPLC-QTOF) MS platform. Additionally, we document changes in cytokine levels. Temporal changes observed in serum carnitine, acylcarnitines, amino acids, lipids, deaminated purines and increases in pro-inflammatory cytokines indicate clear metabolic dysfunction after radiation exposure. Multivariate data analysis shows distinct separation from preirradiation groups and receiver operator characteristic curve analysis indicates high specificity and sensitivity based on area under the curve at all time points after 7.2 Gy irradiation. Finally, a comparison to a 6.5 Gy (LD50/60, HARS level H2) cohort after 24 h postirradiation revealed distinctly increased separations from the 7.2 Gy cohort based on multivariate data models and higher compound fold changes. These results highlight the utility of MS platforms to differentiate time and absorbed dose after a potential radiation exposure that may aid in assigning specific medical interventions and contribute as additional biodosimetry tools.


Acute Radiation Syndrome/blood , Metabolome/radiation effects , Metabolomics , Primates/blood , Acute Radiation Syndrome/genetics , Acute Radiation Syndrome/physiopathology , Amino Acids/blood , Animals , Carnitine/analogs & derivatives , Carnitine/blood , Cytokines/blood , Humans , Lipids/blood , Macaca mulatta/blood , Mass Spectrometry , Metabolome/genetics , Purines/blood , Radiation, Ionizing , Whole-Body Irradiation
18.
Biomed Environ Sci ; 31(6): 467-472, 2018 Jun.
Article En | MEDLINE | ID: mdl-30025561

There is still a need for better protection against or mitigation of the effects of ionizing radiation following conventional radiotherapy or accidental exposure. The objective of our current study was to investigate the possible roles of matrix metalloproteinase inhibitor, ilomastat, in the protection of mice from total body radiation (TBI), and the underlying protective mechanisms. Ilomastat treatment increased the survival of mice after TBI. Ilomastat pretreatment promoted recovery of hematological and immunological cells in mice after 6 Gy γ-ray TBI. Our findings suggest the potential of ilomastat to protect against or mitigate the effects of radiation.


Acute Radiation Syndrome/prevention & control , Gamma Rays/adverse effects , Hydroxamic Acids/therapeutic use , Indoles/therapeutic use , Matrix Metalloproteinase Inhibitors/therapeutic use , Radiation Injuries, Experimental/prevention & control , Radiation-Protective Agents/therapeutic use , Acute Radiation Syndrome/blood , Acute Radiation Syndrome/immunology , Animals , Blood Cells/drug effects , Blood Cells/radiation effects , Dose-Response Relationship, Drug , Mice , Radiation Injuries, Experimental/blood , Radiation Injuries, Experimental/immunology , Spleen/drug effects , Spleen/immunology , Spleen/radiation effects , Survival Analysis , Whole-Body Irradiation
19.
Georgian Med News ; (278): 177-183, 2018 May.
Article Ru | MEDLINE | ID: mdl-29905567

In presented article, by means of a comparative analysis of the relationship between the dose-dependent alterations in the organism's redox status, measured by the innovative method developed by us and the standard methods used for assessing catalase and superoxide dismutase activity, and an end radiobiological effect, was attempted the preliminary assessment of the possibility to apply the parameter of blood plasma total antioxidant activity (TAA) as marker of dose and effect of radiation exposure. The experiments were carried out on white mice randomly divided into groups of irradiated and sham irradiated animals. The mice were exposed to a whole body gamma irradiation by source Cesium-137 (137Cs) at doses of 5 and 7 Gr, a dose rate of 1.1 Gr / min. After 5 days of beginning of observation in animals' blood measurements of the activity of antioxidant enzymes (superoxide dismutase - SOD and catalase - CAT) and total antioxidant activity by spectrophotometric method were evaluated. Parallel monitoring of animal survival was conducted. At the given stage of the study, applicability of OAA as a marker of dose-dependent alterations in antioxidant status was assessed by the criteria of sensitivity and linearity, and as a marker of the effect the strength of the relation between the antioxidant status indicators and the final radiobiological effect, measured by animal life span in post- radiation period (time-effect) For comparative analysis of the effects of radiation on the levels of antioxidant status indicators (SOD, catalase, OAA), ANOVA methods were used, the nature of the causal relationship between levels of antioxidant status and the life span of laboratory animals was analyzed on the basis of the Cox proportional intensity model with time covariates, preliminary processing of data, basic calculations and visualization of the results were carried out using a mathematical package that " STATISTIC 12". The received results testify to the significantly high sensitivity of the total redox-status indicator (OAA) to the dose of irradiation, which makes it possible with full justification to consider it as a promising candidate of the biological exposure dose marker. In addition, the indicator of the total antioxidant status (OAA) of the body allows predicting the dose dependence of the survival of laboratory mice more accurately than the indices of the activity of individual antioxidant enzymes (catalase and SOD), which makes it possible to consider it as a promising candidate for the biomarker of the dose and the effect of radiation exposure.


Acute Radiation Syndrome/diagnosis , Catalase/blood , Gamma Rays , Radiation Exposure/analysis , Superoxide Dismutase/blood , Acute Radiation Syndrome/blood , Animals , Cesium Radioisotopes , Dose-Response Relationship, Radiation , Mice , Proportional Hazards Models , Whole-Body Irradiation
20.
Health Phys ; 115(1): 3-11, 2018 07.
Article En | MEDLINE | ID: mdl-29787425

The search for and development of radiation countermeasures to treat acute lethal radiation injury has been underway for the past six decades, resulting in the identification of multiple classes of radiation countermeasures. However, to date only granulocyte colony-stimulating factor (Neupogen) and PEGylated granulocyte colony-stimulating factor (Neulasta) have been approved by the U.S. Food and Drug Administration for the treatment of hematopoietic acute radiation syndrome. Gamma-tocotrienol has demonstrated radioprotective efficacy in murine and nonhuman primate models. Currently, this agent is under advanced development as a radioprotector, and the authors are trying to identify its efficacy biomarkers. In this study, global metabolomic changes were analyzed using ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry. The pilot study using 16 nonhuman primates (8 nonhuman primates each in gamma-tocotrienol- and vehicle-treated groups), with samples obtained from gamma-tocotrienol-treated and irradiated nonhuman primates, demonstrates several metabolites that are altered after irradiation, including compounds involved in fatty acid beta-oxidation, purine catabolism, and amino acid metabolism. The machine-learning algorithm, Random Forest, separated control, irradiated gamma-tocotrienol-treated, and irradiated vehicle-treated nonhuman primates at 12 h and 24 h as evident in a multidimensional scaling plot. Primary metabolites validated included carnitine/acylcarnitines, amino acids, creatine, and xanthine. Overall, gamma-tocotrienol administration reduced high fluctuations in serum metabolite levels, suggesting an overall beneficial effect on animals exposed to radiation. This initial assessment also highlights the utility of metabolomics in determining underlying physiological mechanisms responsible for the radioprotective efficacy of gamma-tocotrienol.


Acute Radiation Syndrome/prevention & control , Biomarkers/blood , Chromans/pharmacology , Metabolome/radiation effects , Radiation Exposure/adverse effects , Radiation Injuries, Experimental/prevention & control , Radiation-Protective Agents/pharmacology , Vitamin E/analogs & derivatives , Acute Radiation Syndrome/blood , Acute Radiation Syndrome/etiology , Animals , Dose-Response Relationship, Radiation , Female , Macaca mulatta , Male , Metabolomics , Pilot Projects , Radiation Injuries, Experimental/blood , Radiation Injuries, Experimental/etiology , Radiation, Ionizing , Vitamin E/pharmacology
...